Financial credit risk measurement prediction using innovative soft-computing techniques

نویسندگان

  • R. Campos
  • F. J. Ruiz
  • N. Agell
  • C. Angulo
چکیده

Correct default risk classification of an issuer is a critical factor. Practitioners and academics alike agree on this. Thus, under the supervision of financial experts, significant resources of investment advisory companies are used for this task. Researchers, both theoretical and empirical ones, are not the exception either. Nowadays, many methodological and technical advances allow support for the work of classification of issuers. Learning algorithms based on Kernel Machines, particularly Support Vector Machines (SVM), have provided good results in classification problems when data are not linearly separable or noise patterns are employed for training. Moreover, on using kernel structures it is possible to deal with any data space, metric space not being necessary. The study presented in this paper is oriented towards credit risk modelling and measurement through qualitative kernel techniques. In particular, the process followed by the agencies that analyze and value the credit risk of companies, assigning a rating to them, is replicated. Results are expounded for the credit risk forecast of a group of companies that supply the market with public information. Companies’ economic and financial variables and their risk classification, issued by a well-known assessor of the financial market, are used for this purpose.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ارائه یک مدل طبقه‌بندی ترکیبی هوشمند مبتنی بر شبکه‌های عصبی پرسپترون چندلایه و رگرسیون فازی به‌منظور تجزیه و تحلیل مسائل امتیازدهی اعتباری

Financial crises in banking systems are due to inability to manage credit risks. Credit scoring is one of the risk management techniques that analyze the borrower's risk. In this paper, using the advantages of computational intelligence as well as soft computing methods, a new hybrid approach is proposed in order to improve credit risk management. In the proposed method, for modeling in uncerta...

متن کامل

Credit Risk Measurement of Trusted Customers Using Logistic Regression and Neural Networks

The issue of credit risk and deferred bank claims is one of the sensitive issues of banking industry, which can be considered as the main cause of bank failures. In recent years, the economic slowdown accompanied by inflation in Iran has led to an increase in deferred bank claims that could put the country's banking system in serious trouble. Accordingly, the current paper presents a prediction...

متن کامل

Investigating electrochemical drilling (ECD) using statistical and soft computing techniques

In the present study, five modeling approaches of RA, MLP, MNN, GFF, and CANFIS were applied so as to estimate the radial overcut values in electrochemical drilling process. For these models, four input variables, namely electrolyte concentration, voltage, initial machining gap, and tool feed rate, were selected. The developed models were evaluated in terms of their prediction capability with m...

متن کامل

A Predictive System for detection of Bankruptcy using Machine Learning techniques

Bankruptcy is a legal procedure that claims a person or organization as a debtor. It is essential to ascertain the risk of bankruptcy at initial stages to prevent financial losses. In this perspective, different soft computing techniques can be employed to ascertain bankruptcy. This study proposes a bankruptcy prediction system to categorize the companies based on extent of risk. The prediction...

متن کامل

A COMPARATIVE STUDY OF TRADITIONAL AND INTELLIGENCE SOFT COMPUTING METHODS FOR PREDICTING COMPRESSIVE STRENGTH OF SELF – COMPACTING CONCRETES

This study investigates the prediction model of compressive strength of self–compacting concrete (SCC) by utilizing soft computing techniques. The techniques consist of adaptive neuro–based fuzzy inference system (ANFIS), artificial neural network (ANN) and the hybrid of particle swarm optimization with passive congregation (PSOPC) and ANFIS called PSOPC–ANFIS. Their perf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004